muse2/graph/investment.rs
1//! Module for solving the investment order of commodities
2use super::{CommoditiesGraph, GraphEdge, GraphNode};
3use crate::commodity::{CommodityMap, CommodityType};
4use crate::region::RegionID;
5use crate::simulation::investment::InvestmentSet;
6use highs::{Col, HighsModelStatus, RowProblem, Sense};
7use indexmap::IndexMap;
8use log::warn;
9use petgraph::algo::{condensation, toposort};
10use petgraph::graph::Graph;
11use petgraph::prelude::NodeIndex;
12use petgraph::visit::EdgeRef;
13use petgraph::{Directed, Direction};
14use std::collections::HashMap;
15
16type InvestmentGraph = Graph<InvestmentSet, GraphEdge, Directed>;
17
18/// Analyse the commodity graphs for a given year to determine the order in which investment
19/// decisions should be made.
20///
21/// Steps:
22/// 1. Initialise an `InvestmentGraph` from the set of original `CommodityGraph`s for the given
23/// year, filtering to only include SVD/SED commodities and primary edges. `CommodityGraph`s from
24/// all regions are combined into a single `InvestmentGraph`. TODO: at present there can be no
25/// edges between regions; in future we will want to implement trade as edges between regions,
26/// but this will have no impact on the following steps.
27/// 2. Condense strongly connected components (cycles) into `InvestmentSet::Cycle` nodes.
28/// 3. Perform a topological sort on the condensed graph.
29/// 4. Compute layers for investment based on the topological order, grouping independent sets into
30/// `InvestmentSet::Layer`s.
31///
32/// Arguments:
33/// * `graphs` - Commodity graphs for each region and year, outputted from `build_commodity_graphs_for_model`
34/// * `commodities` - All commodities with their types and demand specifications
35/// * `year` - The year to solve the investment order for
36///
37/// # Returns
38/// A Vec of `InvestmentSet`s in the order they should be solved, with cycles grouped into
39/// `InvestmentSet::Cycle`s and independent sets grouped into `InvestmentSet::Layer`s.
40fn solve_investment_order_for_year(
41 graphs: &IndexMap<(RegionID, u32), CommoditiesGraph>,
42 commodities: &CommodityMap,
43 year: u32,
44) -> Vec<InvestmentSet> {
45 // Initialise InvestmentGraph for this year from the set of original `CommodityGraph`s
46 let mut investment_graph = init_investment_graph_for_year(graphs, year, commodities);
47
48 // TODO: condense sibling commodities (commodities that share at least one producer)
49
50 // Condense strongly connected components
51 investment_graph = compress_cycles(&investment_graph);
52
53 // Perform a topological sort on the condensed graph
54 // We can safely unwrap because `toposort` will only return an error in case of cycles, which
55 // should have been detected and compressed with `compress_cycles`
56 let order = toposort(&investment_graph, None).unwrap();
57
58 // Compute layers for investment
59 compute_layers(&investment_graph, &order)
60}
61
62/// Initialise an `InvestmentGraph` for the given year from a set of `CommodityGraph`s
63///
64/// Commodity graphs for each region are first filtered to only include SVD/SED commodities and
65/// primary edges. Each commodity node is then added to a global investment graph as an
66/// `InvestmentSet::Single`, with edges preserved from the original commodity graphs.
67fn init_investment_graph_for_year(
68 graphs: &IndexMap<(RegionID, u32), CommoditiesGraph>,
69 year: u32,
70 commodities: &CommodityMap,
71) -> InvestmentGraph {
72 let mut combined = InvestmentGraph::new();
73
74 // Iterate over the graphs for the given year
75 for ((region_id, _), graph) in graphs.iter().filter(|((_, y), _)| *y == year) {
76 // Filter the graph to only include SVD/SED commodities and primary edges
77 let filtered = graph.filter_map(
78 |_, n| match n {
79 GraphNode::Commodity(cid) => {
80 let kind = &commodities[cid].kind;
81 matches!(
82 kind,
83 CommodityType::ServiceDemand | CommodityType::SupplyEqualsDemand
84 )
85 .then_some(GraphNode::Commodity(cid.clone()))
86 }
87 _ => None,
88 },
89 |_, e| matches!(e, GraphEdge::Primary(_)).then_some(e.clone()),
90 );
91
92 // Add nodes to the combined graph
93 let node_map: HashMap<_, _> = filtered
94 .node_indices()
95 .map(|ni| {
96 let GraphNode::Commodity(cid) = filtered.node_weight(ni).unwrap() else {
97 unreachable!()
98 };
99 (
100 ni,
101 combined.add_node(InvestmentSet::Single((cid.clone(), region_id.clone()))),
102 )
103 })
104 .collect();
105
106 // Add edges to the combined graph
107 for e in filtered.edge_references() {
108 combined.add_edge(
109 node_map[&e.source()],
110 node_map[&e.target()],
111 e.weight().clone(),
112 );
113 }
114 }
115
116 combined
117}
118
119/// Compresses cycles into `InvestmentSet::Cycle` nodes
120fn compress_cycles(graph: &InvestmentGraph) -> InvestmentGraph {
121 // Detect strongly connected components
122 let mut condensed_graph = condensation(graph.clone(), true);
123
124 // Order nodes within each strongly connected component
125 order_sccs(&mut condensed_graph, graph);
126
127 // Map to a new InvestmentGraph
128 condensed_graph.map(
129 // Map nodes to InvestmentSet
130 // If only one member, keep as-is; if multiple members, create Cycle
131 |_, node_weight| match node_weight.len() {
132 0 => unreachable!("Condensed graph node must have at least one member"),
133 1 => node_weight[0].clone(),
134 _ => InvestmentSet::Cycle(
135 node_weight
136 .iter()
137 .flat_map(|s| s.iter_markets())
138 .cloned()
139 .collect(),
140 ),
141 },
142 // Keep edges the same
143 |_, edge_weight| edge_weight.clone(),
144 )
145}
146
147/// Order the members of each strongly connected component using a mixed-integer linear program.
148///
149/// `condensed_graph` contains the SCCs detected in the original investment graph, stored as
150/// `Vec<InvestmentSet>` node weights. Single-element components are already acyclic, but components
151/// with multiple members require an internal ordering so that the investment algorithm can treat
152/// them as near-acyclic chains, minimising potential disruption.
153///
154/// To rank the members of each multi-node component, we construct a mixed integer linear program
155/// (MILP). This MILP is adapted from the classical Linear Ordering Problem:
156///
157/// Marti, Rafael, and G Reinelt.
158/// The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization.
159/// 1st ed. 2011. Berlin: Springer-Verlag, 2011. Web.
160///
161/// The main features of the MILP are:
162/// * Binary variables `x[i][j]` represent whether market `i` should appear before market `j`.
163/// * Antisymmetry constraints force each pair `(i, j)` to choose exactly one direction (i.e. if
164/// `i` comes before `j`, then `j` cannot be before `i`).
165/// * Transitivity constraints prevent 3-cycles, ensuring the resulting relation is acyclic (i.e. if
166/// `i` comes before `j` and `j` comes before `k`, then `k` cannot come before `i`).
167/// * The objective minimises the number of “forward” edges (edges that would point from an earlier
168/// market to a later one), counted within the original SCC and treated as unit penalties. A small
169/// bias (<1) is added to nudge exporters earlier without outweighing the main objective (a bias
170/// >1 would instead prioritise exporters even if it created extra conflicts in the final order).
171///
172/// Once the MILP is solved, markets are scored by the number of pairwise “wins” (how many other
173/// markets they precede). Sorting by this score — using the original index as a tiebreaker to keep
174/// relative order stable — yields the final sequence that replaces the SCC in the condensed graph.
175/// At least one pairwise mismatch is always inevitable (e.g. where X is solved before Y, but Y may
176/// consume X, so the demand for X cannot be guaranteed upfront).
177///
178/// # Example
179///
180/// Suppose three markets (A, B and C) form a cycle in the original graph with the following edges:
181///
182/// ```text
183/// A ← B ← C ← A
184/// ```
185///
186/// Additionally, C has an outgoing edge to a node outside the cycle.
187///
188/// The costs matrix in the MILP is set up to penalise any edge that points “forward” in the final
189/// order: if there's an edge from X to Y we prefer to place Y before X so the edge points backwards:
190///
191/// ```text
192/// | | A | B | C |
193/// | A | 0 | 0 | 1 |
194/// | B | 1 | 0 | 0 |
195/// | C | 0 | 1 | 0 |
196/// ```
197///
198/// On top of this, we give a small preference to markets that export outside the SCC, so nodes with
199/// outgoing edges beyond the cycle are pushed earlier. This is done via an `EXTERNAL_BIAS`
200/// parameter (B) applied to the cost matrix:
201///
202/// ```text
203/// | | A | B | C |
204/// | A | 0 | 0 | 1 + B | i.e. extra penalty for putting A before C
205/// | B | 1 | 0 | 0 + B | i.e. extra penalty for putting B before C
206/// | C | 0 | 1 | 0 |
207/// ```
208///
209/// Solving this problem with binary decision variables for each `x[i][j]`, and constraints to enforce
210/// antisymmetry and transitivity, yields optimal decision variables of:
211///
212/// ```text
213/// x[A][B] = 1 (A before B)
214/// x[A][C] = 0 (C before A)
215/// x[B][A] = 0 (A before B)
216/// x[B][C] = 0 (C before B)
217/// x[C][A] = 1 (C before A)
218/// x[C][B] = 1 (C before B)
219/// ```
220///
221/// From these, summing the number of times each market is preferred over another gives an optimal
222/// order of:
223///
224/// ```text
225/// C, A, B
226/// ```
227///
228/// * By scheduling C before A before B, the edges C ← A and A ← B incur no cost because their
229/// targets appear earlier than their sources.
230/// * The preference towards having exporter markets early in the order keeps C at the front.
231/// * As with any SCC, at least one pairwise violation is guaranteed. In this ordering, the only
232/// pairwise violation is between B and C, as C is solved before B, but B may consume C.
233///
234/// The resulting order replaces the original `InvestmentSet::Cycle` entry inside the condensed
235/// graph, providing a deterministic processing sequence for downstream logic.
236#[allow(clippy::too_many_lines)]
237fn order_sccs(
238 condensed_graph: &mut Graph<Vec<InvestmentSet>, GraphEdge>,
239 original_graph: &InvestmentGraph,
240) {
241 const EXTERNAL_BIAS: f64 = 0.1;
242
243 // Map each investment set back to the node index in the original graph so we can inspect edges.
244 let node_lookup: HashMap<InvestmentSet, NodeIndex> = original_graph
245 .node_indices()
246 .map(|idx| (original_graph.node_weight(idx).unwrap().clone(), idx))
247 .collect();
248
249 // Work through each SCC; groups with just one investment set don't need to be ordered.
250 for group in condensed_graph.node_indices() {
251 let scc = condensed_graph.node_weight_mut(group).unwrap();
252 let n = scc.len();
253 if n <= 1 {
254 continue;
255 }
256
257 // Capture current order and resolve each investment set back to its original graph index.
258 let original_order = scc.clone();
259 let original_indices = original_order
260 .iter()
261 .map(|set| {
262 node_lookup
263 .get(set)
264 .copied()
265 .expect("Condensed SCC node must exist in the original graph")
266 })
267 .collect::<Vec<_>>();
268
269 // Build a fast lookup from original node index to its position in the SCC slice.
270 let mut index_position = HashMap::new();
271 for (pos, idx) in original_indices.iter().copied().enumerate() {
272 index_position.insert(idx, pos);
273 }
274
275 // Record whether any edge inside the original SCC goes from market i to market j; these become penalties.
276 let mut penalties = vec![vec![0.0f64; n]; n];
277 let mut has_external_outgoing = vec![false; n];
278 for (i, &idx) in original_indices.iter().enumerate() {
279 // Loop over the edges going out of this node
280 for edge in original_graph.edges_directed(idx, Direction::Outgoing) {
281 // If the target j is inside this SCC, record a penalty for putting i before j
282 if let Some(&j) = index_position.get(&edge.target()) {
283 penalties[i][j] = 1.0;
284
285 // Otherwise, mark that i has an outgoing edge to outside the SCC
286 } else {
287 has_external_outgoing[i] = true;
288 }
289 }
290 }
291
292 // Bias: if market j has outgoing edges to nodes outside this SCC, we prefer to place it earlier.
293 for (j, has_external) in has_external_outgoing.iter().enumerate() {
294 if *has_external {
295 for (row_idx, row) in penalties.iter_mut().enumerate() {
296 // Add a small bias to all entries in column j, except the diagonal
297 // i.e. penalise putting any other market before market j
298 if row_idx != j {
299 row[j] += EXTERNAL_BIAS;
300 }
301 }
302 }
303 }
304
305 // Build a MILP whose binary variables x[i][j] indicate "i is ordered before j".
306 // Objective: minimise Σ penalty[i][j] · x[i][j], so forward edges (and the export bias) add cost.
307 let mut problem = RowProblem::default();
308 let mut vars: Vec<Vec<Option<Col>>> = vec![vec![None; n]; n];
309 for (i, row) in vars.iter_mut().enumerate() {
310 for (j, slot) in row.iter_mut().enumerate() {
311 if i == j {
312 continue;
313 }
314 let cost = penalties[i][j];
315
316 // Create binary variable x[i][j]
317 *slot = Some(problem.add_integer_column(cost, 0..=1));
318 }
319 }
320
321 // Enforce antisymmetry: for each pair (i, j), exactly one of x[i][j] and x[j][i] is 1.
322 // i.e. if i comes before j, then j cannot come before i.
323 for (i, row) in vars.iter().enumerate() {
324 for (j, _) in row.iter().enumerate().skip(i + 1) {
325 let Some(x_ij) = vars[i][j] else { continue };
326 let Some(x_ji) = vars[j][i] else { continue };
327 problem.add_row(1.0..=1.0, [(x_ij, 1.0), (x_ji, 1.0)]);
328 }
329 }
330
331 // Enforce transitivity to avoid 3-cycles: x[i][j] + x[j][k] + x[k][i] ≤ 2.
332 // i.e. if i comes before j and j comes before k, then k cannot come before i.
333 for (i, row) in vars.iter().enumerate() {
334 for (j, _) in row.iter().enumerate() {
335 if i == j {
336 continue;
337 }
338 for (k, _) in vars.iter().enumerate() {
339 if i == k || j == k {
340 continue;
341 }
342 let Some(x_ij) = vars[i][j] else { continue };
343 let Some(x_jk) = vars[j][k] else { continue };
344 let Some(x_ki) = vars[k][i] else { continue };
345 problem.add_row(..=2.0, [(x_ij, 1.0), (x_jk, 1.0), (x_ki, 1.0)]);
346 }
347 }
348 }
349
350 let model = problem.optimise(Sense::Minimise);
351 let solved = match model.try_solve() {
352 Ok(solved) => solved,
353 Err(status) => {
354 warn!("HiGHS failed while ordering an SCC: {status:?}");
355 continue;
356 }
357 };
358
359 if solved.status() != HighsModelStatus::Optimal {
360 let status = solved.status();
361 warn!("HiGHS returned a non-optimal status while ordering an SCC: {status:?}");
362 continue;
363 }
364
365 let solution = solved.get_solution();
366 // Score each market by the number of "wins" it achieves (times it must precede another).
367 let mut wins = vec![0usize; n];
368 for (i, row) in vars.iter().enumerate() {
369 for (j, var) in row.iter().enumerate() {
370 if i == j {
371 continue;
372 }
373 if var.is_some_and(|col| solution[col] > 0.5) {
374 wins[i] += 1;
375 }
376 }
377 }
378
379 // Sort by descending win count; break ties on the original index so equal-score nodes keep
380 // their relative order.
381 let mut order: Vec<usize> = (0..n).collect();
382 order.sort_by(|&a, &b| wins[b].cmp(&wins[a]).then_with(|| a.cmp(&b)));
383
384 // Rewrite the SCC in the new order
385 *scc = order
386 .into_iter()
387 .map(|idx| original_order[idx].clone())
388 .collect();
389 }
390}
391
392/// Compute layers of investment sets from the topological order
393///
394/// This function works by computing the rank of each node in the graph based on the longest path
395/// from any root node to that node. Any nodes with the same rank are independent and can be solved
396/// in parallel. Nodes with different rank must be solved in order from highest rank (leaf nodes)
397/// to lowest rank (root nodes).
398///
399/// This function computes the ranks of each node, groups nodes by rank, and then produces a final
400/// ordered Vec of `InvestmentSet`s which gives the order in which to solve the investment decisions.
401///
402/// Investment sets with the same rank (i.e., can be solved in parallel) are grouped into
403/// `InvestmentSet::Layer`. Investment sets that are alone in their rank remain as-is (i.e. either
404/// `Single` or `Cycle`). `Layer`s can contain a mix of `Single` and `Cycle` investment sets.
405///
406/// For example, given the following graph:
407///
408/// ```text
409/// A
410/// / \
411/// B C
412/// / \ \
413/// D E F
414/// ```
415///
416/// Rank 0: A -> `InvestmentSet::Single`
417/// Rank 1: B, C -> `InvestmentSet::Layer`
418/// Rank 2: D, E, F -> `InvestmentSet::Layer`
419///
420/// These are returned as a `Vec<InvestmentSet>` from highest rank to lowest (i.e. the D, E, F layer
421/// first, then the B, C layer, then the singleton A).
422///
423/// Arguments:
424/// * `graph` - The investment graph. Any cycles in the graph MUST have already been compressed.
425/// This will be necessary anyway as computing a topological sort to obtain the `order` requires
426/// an acyclic graph.
427/// * `order` - The topological order of the graph nodes. Computed using `petgraph::algo::toposort`.
428///
429/// Returns:
430/// A Vec of `InvestmentSet`s in the order they should be solved, with independent sets grouped into
431/// `InvestmentSet::Layer`s.
432fn compute_layers(graph: &InvestmentGraph, order: &[NodeIndex]) -> Vec<InvestmentSet> {
433 // Initialize all ranks to 0
434 let mut ranks: HashMap<_, usize> = graph.node_indices().map(|n| (n, 0)).collect();
435
436 // Calculate the rank of each node by traversing in topological order
437 // The algorithm works by iterating through each node in topological order and updating the ranks
438 // of its neighbors to be at least one more than the current node's rank.
439 for &u in order {
440 let current_rank = ranks[&u];
441 for v in graph.neighbors_directed(u, Direction::Outgoing) {
442 if let Some(r) = ranks.get_mut(&v) {
443 *r = (*r).max(current_rank + 1);
444 }
445 }
446 }
447
448 // Group nodes by rank
449 let max_rank = ranks.values().copied().max().unwrap_or(0);
450 let mut groups: Vec<Vec<InvestmentSet>> = vec![Vec::new(); max_rank + 1];
451 for node_idx in order {
452 let rank = *ranks.get(node_idx).unwrap();
453 let w = graph.node_weight(*node_idx).unwrap().clone();
454 groups[rank].push(w);
455 }
456
457 // Produce final ordered Vec<InvestmentSet>: ranks descending (leaf-first),
458 // compressing equal-rank nodes into an InvestmentSet::Layer.
459 let mut result = Vec::new();
460 for mut items in groups.into_iter().rev() {
461 if items.is_empty() {
462 unreachable!("Should be no gaps in the ranking")
463 }
464 // If only one InvestmentSet in the group, we do not need to compress into a layer, so just
465 // push the single item (this item may be a `Single` or `Cycle`).
466 if items.len() == 1 {
467 result.push(items.remove(0));
468 // Otherwise, create a layer. The items within the layer may be a mix of `Single` or `Cycle`.
469 } else {
470 result.push(InvestmentSet::Layer(items));
471 }
472 }
473
474 result
475}
476
477/// Determine investment ordering for each year
478///
479/// # Arguments
480///
481/// * `commodity_graphs` - Commodity graphs for each region and year, outputted from `build_commodity_graphs_for_model`
482/// * `commodities` - All commodities with their types and demand specifications
483///
484/// # Returns
485///
486/// A map from `year` to the ordered list of `InvestmentSet`s for investment decisions. The
487/// ordering ensures that leaf-node `InvestmentSet`s (those with no outgoing edges) are solved
488/// first.
489pub fn solve_investment_order_for_model(
490 commodity_graphs: &IndexMap<(RegionID, u32), CommoditiesGraph>,
491 commodities: &CommodityMap,
492 years: &[u32],
493) -> HashMap<u32, Vec<InvestmentSet>> {
494 let mut investment_orders = HashMap::new();
495 for year in years {
496 let order = solve_investment_order_for_year(commodity_graphs, commodities, *year);
497 investment_orders.insert(*year, order);
498 }
499 investment_orders
500}
501
502#[cfg(test)]
503mod tests {
504 use super::*;
505 use crate::commodity::Commodity;
506 use crate::fixture::{sed_commodity, svd_commodity};
507 use petgraph::graph::Graph;
508 use rstest::rstest;
509 use std::rc::Rc;
510
511 #[test]
512 fn test_order_sccs_simple_cycle() {
513 let markets = ["A", "B", "C"].map(|id| InvestmentSet::Single((id.into(), "GBR".into())));
514
515 // Create graph with cycle edges plus an extra dependency B ← D (see doc comment)
516 let mut original = InvestmentGraph::new();
517 let node_indices: Vec<_> = markets
518 .iter()
519 .map(|set| original.add_node(set.clone()))
520 .collect();
521 for &(src, dst) in &[(1, 0), (2, 1), (0, 2)] {
522 original.add_edge(
523 node_indices[src],
524 node_indices[dst],
525 GraphEdge::Primary("process1".into()),
526 );
527 }
528 // External market receiving exports from C; encourages C to appear early.
529 let external = original.add_node(InvestmentSet::Single(("X".into(), "GBR".into())));
530 original.add_edge(
531 node_indices[2],
532 external,
533 GraphEdge::Primary("process2".into()),
534 );
535
536 // Single SCC containing all markets.
537 let mut condensed: Graph<Vec<InvestmentSet>, GraphEdge> = Graph::new();
538 let component = condensed.add_node(markets.to_vec());
539
540 order_sccs(&mut condensed, &original);
541
542 // Expected order corresponds to the example in the doc comment.
543 // Note that C should be first, as it has an outgoing edge to the external market.
544 let expected = ["C", "A", "B"]
545 .map(|id| InvestmentSet::Single((id.into(), "GBR".into())))
546 .to_vec();
547
548 assert_eq!(condensed.node_weight(component).unwrap(), &expected);
549 }
550
551 #[rstest]
552 fn test_solve_investment_order_linear_graph(
553 sed_commodity: Commodity,
554 svd_commodity: Commodity,
555 ) {
556 // Create a simple linear graph: A -> B -> C
557 let mut graph = Graph::new();
558
559 let node_a = graph.add_node(GraphNode::Commodity("A".into()));
560 let node_b = graph.add_node(GraphNode::Commodity("B".into()));
561 let node_c = graph.add_node(GraphNode::Commodity("C".into()));
562
563 // Add edges: A -> B -> C
564 graph.add_edge(node_a, node_b, GraphEdge::Primary("process1".into()));
565 graph.add_edge(node_b, node_c, GraphEdge::Primary("process2".into()));
566
567 // Create commodities map using fixtures
568 let mut commodities = CommodityMap::new();
569 commodities.insert("A".into(), Rc::new(sed_commodity.clone()));
570 commodities.insert("B".into(), Rc::new(sed_commodity));
571 commodities.insert("C".into(), Rc::new(svd_commodity));
572
573 let graphs = IndexMap::from([(("GBR".into(), 2020), graph)]);
574 let result = solve_investment_order_for_year(&graphs, &commodities, 2020);
575
576 // Expected order: C, B, A (leaf nodes first)
577 // No cycles or layers, so all investment sets should be `Single`
578 assert_eq!(result.len(), 3);
579 assert_eq!(result[0], InvestmentSet::Single(("C".into(), "GBR".into())));
580 assert_eq!(result[1], InvestmentSet::Single(("B".into(), "GBR".into())));
581 assert_eq!(result[2], InvestmentSet::Single(("A".into(), "GBR".into())));
582 }
583
584 #[rstest]
585 fn test_solve_investment_order_cyclic_graph(sed_commodity: Commodity) {
586 // Create a simple cyclic graph: A -> B -> A
587 let mut graph = Graph::new();
588
589 let node_a = graph.add_node(GraphNode::Commodity("A".into()));
590 let node_b = graph.add_node(GraphNode::Commodity("B".into()));
591
592 // Add edges creating a cycle: A -> B -> A
593 graph.add_edge(node_a, node_b, GraphEdge::Primary("process1".into()));
594 graph.add_edge(node_b, node_a, GraphEdge::Primary("process2".into()));
595
596 // Create commodities map using fixtures
597 let mut commodities = CommodityMap::new();
598 commodities.insert("A".into(), Rc::new(sed_commodity.clone()));
599 commodities.insert("B".into(), Rc::new(sed_commodity));
600
601 let graphs = IndexMap::from([(("GBR".into(), 2020), graph)]);
602 let result = solve_investment_order_for_year(&graphs, &commodities, 2020);
603
604 // Should be a single `Cycle` investment set containing both commodities
605 assert_eq!(result.len(), 1);
606 assert_eq!(
607 result[0],
608 InvestmentSet::Cycle(vec![("A".into(), "GBR".into()), ("B".into(), "GBR".into())])
609 );
610 }
611
612 #[rstest]
613 fn test_solve_investment_order_layered_graph(
614 sed_commodity: Commodity,
615 svd_commodity: Commodity,
616 ) {
617 // Create a graph with layers:
618 // A
619 // / \
620 // B C
621 // \ /
622 // D
623 let mut graph = Graph::new();
624
625 let node_a = graph.add_node(GraphNode::Commodity("A".into()));
626 let node_b = graph.add_node(GraphNode::Commodity("B".into()));
627 let node_c = graph.add_node(GraphNode::Commodity("C".into()));
628 let node_d = graph.add_node(GraphNode::Commodity("D".into()));
629
630 // Add edges
631 graph.add_edge(node_a, node_b, GraphEdge::Primary("process1".into()));
632 graph.add_edge(node_a, node_c, GraphEdge::Primary("process2".into()));
633 graph.add_edge(node_b, node_d, GraphEdge::Primary("process3".into()));
634 graph.add_edge(node_c, node_d, GraphEdge::Primary("process4".into()));
635
636 // Create commodities map using fixtures
637 let mut commodities = CommodityMap::new();
638 commodities.insert("A".into(), Rc::new(sed_commodity.clone()));
639 commodities.insert("B".into(), Rc::new(sed_commodity.clone()));
640 commodities.insert("C".into(), Rc::new(sed_commodity));
641 commodities.insert("D".into(), Rc::new(svd_commodity));
642
643 let graphs = IndexMap::from([(("GBR".into(), 2020), graph)]);
644 let result = solve_investment_order_for_year(&graphs, &commodities, 2020);
645
646 // Expected order: D, Layer(B, C), A
647 assert_eq!(result.len(), 3);
648 assert_eq!(result[0], InvestmentSet::Single(("D".into(), "GBR".into())));
649 assert_eq!(
650 result[1],
651 InvestmentSet::Layer(vec![
652 InvestmentSet::Single(("B".into(), "GBR".into())),
653 InvestmentSet::Single(("C".into(), "GBR".into()))
654 ])
655 );
656 assert_eq!(result[2], InvestmentSet::Single(("A".into(), "GBR".into())));
657 }
658
659 #[rstest]
660 fn test_solve_investment_order_multiple_regions(
661 sed_commodity: Commodity,
662 svd_commodity: Commodity,
663 ) {
664 // Create a simple linear graph: A -> B -> C
665 let mut graph = Graph::new();
666
667 let node_a = graph.add_node(GraphNode::Commodity("A".into()));
668 let node_b = graph.add_node(GraphNode::Commodity("B".into()));
669 let node_c = graph.add_node(GraphNode::Commodity("C".into()));
670
671 // Add edges: A -> B -> C
672 graph.add_edge(node_a, node_b, GraphEdge::Primary("process1".into()));
673 graph.add_edge(node_b, node_c, GraphEdge::Primary("process2".into()));
674
675 // Create commodities map using fixtures
676 let mut commodities = CommodityMap::new();
677 commodities.insert("A".into(), Rc::new(sed_commodity.clone()));
678 commodities.insert("B".into(), Rc::new(sed_commodity));
679 commodities.insert("C".into(), Rc::new(svd_commodity));
680
681 // Duplicate the graph over two regions
682 let graphs = IndexMap::from([
683 (("GBR".into(), 2020), graph.clone()),
684 (("FRA".into(), 2020), graph),
685 ]);
686 let result = solve_investment_order_for_year(&graphs, &commodities, 2020);
687
688 // Expected order: Should have three layers, each with two commodities (one per region)
689 assert_eq!(result.len(), 3);
690 assert_eq!(
691 result[0],
692 InvestmentSet::Layer(vec![
693 InvestmentSet::Single(("C".into(), "GBR".into())),
694 InvestmentSet::Single(("C".into(), "FRA".into()))
695 ])
696 );
697 assert_eq!(
698 result[1],
699 InvestmentSet::Layer(vec![
700 InvestmentSet::Single(("B".into(), "GBR".into())),
701 InvestmentSet::Single(("B".into(), "FRA".into()))
702 ])
703 );
704 assert_eq!(
705 result[2],
706 InvestmentSet::Layer(vec![
707 InvestmentSet::Single(("A".into(), "GBR".into())),
708 InvestmentSet::Single(("A".into(), "FRA".into()))
709 ])
710 );
711 }
712}