muse2/input/agent/
objective.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//! Code for reading the agent objectives CSV file.
use super::super::*;
use crate::agent::{Agent, AgentObjective, DecisionRule};
use anyhow::{ensure, Context, Result};
use std::collections::HashMap;
use std::path::Path;
use std::rc::Rc;

const AGENT_OBJECTIVES_FILE_NAME: &str = "agent_objectives.csv";

define_id_getter! {Agent}

/// Read agent objective info from the agent_objectives.csv file.
///
/// # Arguments
///
/// * `model_dir` - Folder containing model configuration files
///
/// # Returns
///
/// A map of Agents, with the agent ID as the key
pub fn read_agent_objectives(
    model_dir: &Path,
    agents: &HashMap<Rc<str>, Agent>,
) -> Result<HashMap<Rc<str>, Vec<AgentObjective>>> {
    let file_path = model_dir.join(AGENT_OBJECTIVES_FILE_NAME);
    let agent_objectives_csv = read_csv(&file_path)?;
    read_agent_objectives_from_iter(agent_objectives_csv, agents)
        .with_context(|| input_err_msg(&file_path))
}

fn read_agent_objectives_from_iter<I>(
    iter: I,
    agents: &HashMap<Rc<str>, Agent>,
) -> Result<HashMap<Rc<str>, Vec<AgentObjective>>>
where
    I: Iterator<Item = AgentObjective>,
{
    let mut objectives = HashMap::new();
    for objective in iter {
        let (id, agent) = agents
            .get_key_value(objective.agent_id.as_str())
            .context("Invalid agent ID")?;

        // Check that required parameters are present and others are absent
        check_objective_parameter(&objective, &agent.decision_rule)?;

        // Append to Vec with the corresponding key or create
        objectives
            .entry(Rc::clone(id))
            .or_insert_with(|| Vec::with_capacity(1))
            .push(objective);
    }

    ensure!(
        objectives.len() >= agents.len(),
        "All agents must have at least one objective"
    );

    Ok(objectives)
}

/// Check that required parameters are present and others are absent
fn check_objective_parameter(
    objective: &AgentObjective,
    decision_rule: &DecisionRule,
) -> Result<()> {
    // Check that the user hasn't supplied a value for a field we're not using
    macro_rules! check_field_none {
        ($field:ident) => {
            ensure!(
                objective.$field.is_none(),
                "Field {} should be empty for this decision rule",
                stringify!($field)
            )
        };
    }

    // Check that required fields are present
    macro_rules! check_field_some {
        ($field:ident) => {
            ensure!(
                objective.$field.is_some(),
                "Required field {} is empty",
                stringify!($field)
            )
        };
    }

    match decision_rule {
        DecisionRule::Single => {
            check_field_none!(decision_weight);
            check_field_none!(decision_lexico_tolerance);
        }
        DecisionRule::Weighted => {
            check_field_none!(decision_lexico_tolerance);
            check_field_some!(decision_weight);
        }
        DecisionRule::Lexicographical => {
            check_field_none!(decision_weight);
            check_field_some!(decision_lexico_tolerance);
        }
    };

    Ok(())
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::agent::{ObjectiveType, SearchSpace};
    use crate::commodity::{Commodity, CommodityCostMap, CommodityType, DemandMap};
    use crate::region::RegionSelection;
    use crate::time_slice::TimeSliceLevel;

    #[test]
    fn test_check_objective_parameter() {
        macro_rules! objective {
            ($decision_weight:expr, $decision_lexico_tolerance:expr) => {
                AgentObjective {
                    agent_id: "agent".into(),
                    objective_type: ObjectiveType::EquivalentAnnualCost,
                    decision_weight: $decision_weight,
                    decision_lexico_tolerance: $decision_lexico_tolerance,
                }
            };
        }

        // DecisionRule::Single
        let decision_rule = DecisionRule::Single;
        let objective = objective!(None, None);
        assert!(check_objective_parameter(&objective, &decision_rule).is_ok());
        let objective = objective!(Some(1.0), None);
        assert!(check_objective_parameter(&objective, &decision_rule).is_err());
        let objective = objective!(None, Some(1.0));
        assert!(check_objective_parameter(&objective, &decision_rule).is_err());

        // DecisionRule::Weighted
        let decision_rule = DecisionRule::Weighted;
        let objective = objective!(Some(1.0), None);
        assert!(check_objective_parameter(&objective, &decision_rule).is_ok());
        let objective = objective!(None, None);
        assert!(check_objective_parameter(&objective, &decision_rule).is_err());
        let objective = objective!(None, Some(1.0));
        assert!(check_objective_parameter(&objective, &decision_rule).is_err());

        // DecisionRule::Lexicographical
        let decision_rule = DecisionRule::Lexicographical;
        let objective = objective!(None, Some(1.0));
        assert!(check_objective_parameter(&objective, &decision_rule).is_ok());
        let objective = objective!(None, None);
        assert!(check_objective_parameter(&objective, &decision_rule).is_err());
        let objective = objective!(Some(1.0), None);
        assert!(check_objective_parameter(&objective, &decision_rule).is_err());
    }

    #[test]
    fn test_read_agent_objectives_from_iter() {
        let commodity = Rc::new(Commodity {
            id: "commodity1".into(),
            description: "A commodity".into(),
            kind: CommodityType::SupplyEqualsDemand,
            time_slice_level: TimeSliceLevel::Annual,
            costs: CommodityCostMap::new(),
            demand: DemandMap::new(),
        });
        let agents: HashMap<_, _> = [(
            "agent".into(),
            Agent {
                id: "agent".into(),
                description: "".into(),
                commodity,
                commodity_portion: 1.0,
                search_space: SearchSpace::AllProcesses,
                decision_rule: DecisionRule::Single,
                capex_limit: None,
                annual_cost_limit: None,
                regions: RegionSelection::All,
                objectives: Vec::new(),
            },
        )]
        .into_iter()
        .collect();

        // Valid
        let objective = AgentObjective {
            agent_id: "agent".into(),
            objective_type: ObjectiveType::EquivalentAnnualCost,
            decision_weight: None,
            decision_lexico_tolerance: None,
        };
        let expected = [("agent".into(), vec![objective.clone()])]
            .into_iter()
            .collect();
        let actual = read_agent_objectives_from_iter([objective].into_iter(), &agents).unwrap();
        assert_eq!(actual, expected);

        // Missing objective for agent
        assert!(read_agent_objectives_from_iter([].into_iter(), &agents).is_err());

        // Bad parameter
        let objective = AgentObjective {
            agent_id: "agent".into(),
            objective_type: ObjectiveType::EquivalentAnnualCost,
            decision_weight: Some(1.0),
            decision_lexico_tolerance: None,
        };
        assert!(read_agent_objectives_from_iter([objective].into_iter(), &agents).is_err());
    }
}