muse2/simulation/optimisation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
//! Code for performing dispatch optimisation.
//!
//! This is used to calculate commodity flows and prices.
use crate::agent::{Asset, AssetPool};
use crate::model::Model;
use crate::process::ProcessFlow;
use crate::simulation::filter_assets;
use crate::time_slice::{TimeSliceID, TimeSliceInfo};
use highs::{HighsModelStatus, RowProblem as Problem, Sense};
use indexmap::IndexMap;
use log::{error, info};
use std::iter;
use std::rc::Rc;
/// A decision variable in the optimisation
///
/// Note that this type does **not** include the value of the variable; it just refers to a
/// particular column of the problem.
type Variable = highs::Col;
/// A map for easy lookup of variables in the problem.
///
/// The entries are ordered (see [`IndexMap`]).
///
/// We use this data structure for two things:
///
/// 1. In order define constraints for the optimisation
/// 2. To keep track of the combination of parameters that each variable corresponds to, for when we
/// are reading the results of the optimisation.
#[derive(Default)]
pub struct VariableMap(IndexMap<VariableMapKey, Variable>);
impl VariableMap {
/// Get the [`Variable`] corresponding to the given parameters.
fn get(&self, asset_id: u32, commodity_id: &Rc<str>, time_slice: &TimeSliceID) -> Variable {
let key = VariableMapKey {
asset_id,
commodity_id: Rc::clone(commodity_id),
time_slice: time_slice.clone(),
};
*self
.0
.get(&key)
.expect("No variable found for given params")
}
}
/// A key for a [`VariableMap`]
#[derive(Eq, PartialEq, Hash)]
pub struct VariableMapKey {
asset_id: u32,
commodity_id: Rc<str>,
time_slice: TimeSliceID,
}
impl VariableMapKey {
/// Create a new [`VariableMapKey`]
fn new(asset_id: u32, commodity_id: Rc<str>, time_slice: TimeSliceID) -> Self {
Self {
asset_id,
commodity_id,
time_slice,
}
}
}
/// The solution to the dispatch optimisation problem
pub struct Solution {
variables: VariableMap,
solution: highs::Solution,
}
impl Solution {
/// Iterate over the newly calculated commodity flows for assets.
///
/// Note that this only includes commodity flows which relate to assets, so not every commodity
/// in the simulation will necessarily be represented.
pub fn iter_commodity_flows_for_assets(&self) -> impl Iterator<Item = (&VariableMapKey, f64)> {
self.variables
.0
.keys()
.zip(self.solution.columns().iter().copied())
}
/// Iterate over the newly calculated commodity prices.
///
/// Note that there may only be prices for a subset of the commodities; the rest will need to be
/// calculated in another way.
pub fn iter_commodity_prices(&self) -> impl Iterator<Item = (&Rc<str>, f64)> {
// **PLACEHOLDER**
iter::empty()
}
}
/// Perform the dispatch optimisation.
///
/// For a detailed description, please see the [dispatch optimisation formulation][1].
///
/// [1]: https://energysystemsmodellinglab.github.io/MUSE_2.0/dispatch_optimisation.html
///
/// # Arguments
///
/// * `model` - The model
/// * `assets` - The asset pool
/// * `year` - Current milestone year
///
/// # Returns
///
/// A solution containing new commodity flows for assets and prices for (some) commodities.
pub fn perform_dispatch_optimisation(model: &Model, assets: &AssetPool, year: u32) -> Solution {
info!("Performing dispatch optimisation...");
// Set up problem
let mut problem = Problem::default();
let variables = add_variables(&mut problem, model, assets, year);
// Add constraints
add_asset_contraints(&mut problem, &variables, model, assets, year);
// Solve problem
let solution = problem.optimise(Sense::Minimise).solve();
let status = solution.status();
if status != HighsModelStatus::Optimal {
// **TODO**: Make this a hard error once the problem is actually solvable
error!("Could not solve: {status:?}");
}
Solution {
variables,
solution: solution.get_solution(),
}
}
/// Add variables to the optimisation problem.
///
/// # Arguments
///
/// * `problem` - The optimisation problem
/// * `model` - The model
/// * `assets` - The asset pool
/// * `year` - Current milestone year
///
/// # Returns
///
/// A [`VariableMap`] with the problem's variables as values.
fn add_variables(
problem: &mut Problem,
model: &Model,
assets: &AssetPool,
year: u32,
) -> VariableMap {
info!("Adding variables to problem...");
let mut variables = VariableMap::default();
for asset in filter_assets(assets, year) {
for flow in asset.process.flows.iter() {
for time_slice in model.time_slice_info.iter_ids() {
let coeff = calculate_cost_coefficient(year, asset, flow, time_slice);
// var's value must be <= 0 for inputs and >= 0 for outputs
let var = if flow.flow < 0.0 {
problem.add_column(coeff, ..=0.0)
} else {
problem.add_column(coeff, 0.0..)
};
let key = VariableMapKey::new(
asset.id,
Rc::clone(&flow.commodity.id),
time_slice.clone(),
);
let existing = variables.0.insert(key, var).is_some();
assert!(!existing, "Duplicate entry for var");
}
}
}
variables
}
/// Calculate the cost coefficient for a decision variable
fn calculate_cost_coefficient(
_year: u32,
_asset: &Asset,
_flow: &ProcessFlow,
_time_slice: &TimeSliceID,
) -> f64 {
// **PLACEHOLDER**
1.0
}
/// Add asset-level constraints
fn add_asset_contraints(
problem: &mut Problem,
variables: &VariableMap,
model: &Model,
assets: &AssetPool,
year: u32,
) {
add_commodity_balance_constraints(problem, variables, model, assets, year);
// **TODO**: Currently it's safe to assume all process flows are non-flexible, as we enforce
// this when reading data in. Once we've added support for flexible process flows, we will
// need to add different constraints for assets with flexible and non-flexible flows.
//
// See: https://github.com/EnergySystemsModellingLab/MUSE_2.0/issues/360
add_fixed_asset_constraints(problem, variables, assets, year, &model.time_slice_info);
add_asset_capacity_constraints(problem, variables, model, assets, year);
}
/// Add asset-level input-output commodity balances
fn add_commodity_balance_constraints(
_problem: &mut Problem,
_variables: &VariableMap,
_model: &Model,
_assets: &AssetPool,
_year: u32,
) {
info!("Adding commodity balance constraints...");
// Sanity check: we rely on the first n values of the dual row values corresponding to the
// commodity constraints, so these must be the first rows
assert!(
_problem.num_rows() == 0,
"Commodity balance constraints must be added before other constraints"
);
}
/// Add constraints for non-flexible assets.
///
/// Non-flexible assets are those which have a fixed ratio between inputs and outputs.
///
/// See description in [the dispatch optimisation documentation][1].
///
/// [1]: https://energysystemsmodellinglab.github.io/MUSE_2.0/dispatch_optimisation.html#non-flexible-assets
fn add_fixed_asset_constraints(
problem: &mut Problem,
variables: &VariableMap,
assets: &AssetPool,
year: u32,
time_slice_info: &TimeSliceInfo,
) {
info!("Adding constraints for non-flexible assets...");
for asset in filter_assets(assets, year) {
// Get first PAC. unwrap is safe because all processes have at least one PAC.
let pac1 = asset.process.iter_pacs().next().unwrap();
for time_slice in time_slice_info.iter_ids() {
let pac_var = variables.get(asset.id, &pac1.commodity.id, time_slice);
let pac_term = (pac_var, -1.0 / pac1.flow);
for flow in asset.process.flows.iter() {
// Don't add a constraint for the PAC itself
if Rc::ptr_eq(&flow.commodity, &pac1.commodity) {
continue;
}
// We are enforcing that (var / flow) - (pac_var / pac_flow) = 0
let var = variables.get(asset.id, &flow.commodity.id, time_slice);
problem.add_row(0.0..=0.0, [(var, 1.0 / flow.flow), pac_term]);
}
}
}
}
/// Add asset-level capacity and availability constraints
///
/// See description in [the dispatch optimisation documentation][1].
///
/// [1]: https://energysystemsmodellinglab.github.io/MUSE_2.0/dispatch_optimisation.html#asset-level-capacity-and-availability-constraints
fn add_asset_capacity_constraints(
_problem: &mut Problem,
_variables: &VariableMap,
_model: &Model,
_assets: &AssetPool,
_year: u32,
) {
info!("Adding asset-level capacity and availability constraints...");
}